
Measure Theory with Ergodic Horizons
Lecture 10

Before proving the lighten Heorem
,

let's recall equivalent voitions he compactness in

metric spaces.

Thereve . For any
metric space /X, 1) , the following are equivalent :

(1) X is compact ,
i

. e . every open cover has a finite subcover.

(2) X is sequentially compact, i. e, every sequence has a convergent subsequence.
13) X is complete and totally bounded ,

i
. e . for each 220 there is a finitenet,

i

. e
.

a cover of X consisting of balls of radius 2.

Corollary .
Thus

,
in a complete metric space , compact subsets are exactly the closed and

totally bounded ones.

Theorem
. Every finite Borel measure M on a Polish metric space X is fight.

Proof
.

LetB be a measurable set. By strong regularity .
Here is a closed set

CEB with MIBIC) <3
,

so it's enough to find a compact subset REC with

N(CTR) < 5/2 · In other words
,

we may assume that B is closed . Since B is still

Police with the same metric as X
,

we was assume B = X
.

Fix 30.

Let (3u) be a positive sequence conveying to 0, e.). For each neI
,

let

(Bi") be a cover of X by closed balls Bis of racives In (such a sequence exists

~

/+ 1
M/X) for all

philhNotlarge enough K
, by monotone

nEIN

Then K is closed being an intersection of closedrets
,
and it is totally bounded

by construction :Go each En, Bake is a finite Ennet for Cr
,

hence

also for K
. Lastly , M/X(K) = M/Y(X( :) [M(X() = Es . 2

*+
= 2.



Corollary (strong reg,

and tightnes for some 5-finite measured
.

Let X be a Polish space.

Any locally finite Bonel measure e on X is strongly regular and light.

Proof
.

X is I'd <tel
,

so locally finite ->> 0- finite by open sels
,

have M is strong-
by regular. Recall/learn that open subsets of Polish are Polish by with a

different equivalent metric
,

hence X is Definite by Polish subsets
, usingwhich one can deduce lightnes , just like in the proof of strong

regularity for Definite by open sets
.

HW.

99 % lemmas.

Percentage pigeonhole principle .

Let IX
,
B

,M) be a measure space and let M be a finite

measure set. suppose that MELBu where each Bu is measurable and such

that h(M) > 0
. 94M(LBL) ,

neIN i
. e

.

M is 2 39% ofLB. New

there is Bu whose :95% is M
,
i

.
e.

M(M1Bu)
= 0

. 99.
M(Bu)

Proof. Pots of
soup und percentage of currots.

99 % lemmas,

(a) Let (X
,

B
, M) be a definite measure space and AEB be an algebra

generating B
.

The for each positive measure set MEX Here is AA

of finish positive measure with N(MMA) = 0
.

94MIA).

16) For IRC with Lobesque measure x and for every positive measure set MERA
there are arbitrarity small boxes B of finite measure

such that
b (m +B) = 0

. 99 M(B).



(c) letMo denote the Bernoullilp) measure on 2. . For every positive remove of

M22N there a arbitrarily small (in measuredglinders Couch that

u(mrc) = 0
. 934(C).

Proof
.

(a) By the uniquemen in Caratheodoy's Ru, we know let h = the outer measure

not defined by the algebra A . Fix a positive measure at M and make it

smaller to make it have finite positive measure (by Ofinilwen ,
X = VB-

2

where (Buls/ and OCM(MMBu) <@ fr come w bythl sabadditivity .
By the def of M*, Here is >And ? A such let

M/VAnLM) < P
. 01 MIM) = 0

.01 :MIA
Disjointifying weway assume At the An are disjoint ,

here the percentage
Pigeonhole gives some An with NCM1An) = 0 . 99 ·M(An).

(6) Follows from (a) applied to the algebra A of finite disjoint unious of
boxes

, noting that ent box of finite measure is itself a finite disjoint
of boxes of measure 3

,
so every AA is a fin

, disjunion of boxes
ofmeasure 9.

(2) Follows from (a) applied to the algebra of finite unions of cylinders, nothing
Not each cylinder is a finite union of cylinders of measure S.

Remark. The 99% cannot be replaced by 100 % (i
. e

. all except wall) bene there are closed

sets with empty interior and positive mensure
,

e .g .

some Cantor sets in IR.

Applications to ergodicity

Def
.

let (
,
B

, u) be a measure space . An equivalence relation E on
X is called



deve
Eviurariant lie Union of Eorbill measurable st is walloon a

Examples. (a) Most equivalence relations arise as orbit equivalence
relations of actions of

groups .
Let MMX be an

action of a group M on a set X. The orbit equiva
M(A)-M(B) = 0 lence relation Ep of this action is the relation of being

in the same Foorbit
,

i
.

e
.

fr x
, yeX,

x Epy := y = F. x for some NET.

A single P-orbit is [x3p := P. x
: = 38 . x : VEM3

,
the same

as the Ep-class of x.

co
,M 20

, 1)
(6) Ut T: X - X be any map . The orbit equivalence relation of T

,
denoted by

T

,

is defined by : x Epy : <= X and
you in the same at connected component

=) T"x = Thy for core n
,

mEIN.

Consider the graphe of T as an actual graph at with vertex set X and direc-

led edyes of the form (x
,
Tx)

,
XeX . This is an acyclic graych is T is aperiodic,

i
.

e
.
Tx X for all u21 and xEX.

1 --

. If i is an a periodic bijection ,
then each connec-

x led component is a "D-line"
,

i
.

e
.

a bein infinite line.

I i
X

We'll show next time Kent the Vitally equivalence relation Er on IR is egodic
not Lebesque measure.


